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Large-scale graph processing is ubiquitous
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Large-scale graph processing is ubiquitous
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Large-scale graph processing is ubiquitous
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Powerful, heterogeneous machines

Solutions Partners About SGI

More sockets. More memory. More SAP HANA.

Cort Pasinett
2 tweet (0| [ shore (0| B shore 1

SGI UV 300H 20-Sacket Appliance Certified by SAP to Run SAP HANA® Under Controlled Availability
Announcing the first 20-socket SAP HANA-certified in-memory server!

SGI announced today that the SGI® UV™ 300H is now SAP@-certified to run the SAP HANAG platform in
controlled availability at 20-sockets-delivering up to 15 terabytes (TB) of in-memory computing capacity in a
single: node. Asserting the value of key enhancements in support package stack 10 (SPS10) for SAP HANA and
SAP's close collaboration with system providers, SGI UV 300H delivers outstanding single-node performance and
simplicity for enterprises moving to SAP HANA to gain business breakthroughs

SGI UV 300H is a specialized offering in the SGI® UV™
server line for in-memory computing that enables
enterprises to further unlock value from information in
real-time, boost innovation, and lower IT costs with SAP
HANA. Featuring a highly differentiated single-node
architecture, the system delivers significant performance
advantages for businesses running SAP® Business Suite
4 SAP HANA (SAP S/4HANA) and complex analytics at
extreme scale. The single-node simplicity also helps
enterprises eliminate overhead associated with clustered
environments, streamline high availability, and scale-up
seamlessly as data volumes grow with near-linear
performance.

Integrated with the racently announced SAP HANA
SPS10, SGI UV 300H capitalizes on deep collaboration
between SAP, Intel and SGI to optimize SAP HANA-based
workloads on multicore NUMA (non-uniform mermory
access) systems. This enables enterprises to leverage single-node systems with very large memory capacity and

Terabytes of RAM on multiple
sockets
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Powerful, heterogeneous machines

pwwes [ntel Unveils Plans for Knights Mill, a Xeon Phi for Deep
More sockets. More Learning
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Atthe Intel Developer Forum (IDF) this week in San Francisco, Intel revealed it is working on a new Xeon Phi processor aimed
SGI UV 300 20-Sacket Applian 3
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Powerful, heterogeneous machines

e [Ntel Unveils P Intel Announces SSD DC P3608 Series

More sockets. More Le arnin g by Billy Tallis on September 23, 2015 12:00 PM EST
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Integrated with the recently annour
SPS10, SGI UV 300H capitalizes on
between SAP, Intel and SGI to optit
workloads on multicore NUMA (non
access) systems. This enables enter

Intel is introducing a new family of enterprise PCle SSDs with the aim of outperforming their existing DC
P3600 series and even beating the DC P3700 series in many metrics. To do this, they've essentially put two
SOC kets P3600 SSDs on to one expansion card and widened the interface to 8 lanes of PCle 3.0. While this does

POWe rfu I N Q come across as a bit of a quick and dirty solution, it is a very straightforward way for Intel to deliver higher
performance, albeit at the cost of sharply increased power consumption.

Terabytes of

Fast, large-capacity Non-volatile Memory
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Graph Processing: Applications

Community Detection
Find Common Friends
Find Shortest Paths

Estimate Impact of Vertices (webpages, users, ...)
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Example: Pagerank

o Calculate impact of each vertex

P k
Pagerank, = o x Z ragerantu | (1—a)
) degree,
u€ Neighborhood(v)

@ Simple Algorithm:
o In each iteration, distribute current impact along out-edges, weighted
by degree
e Sum up all incoming impacts = new impact for next iteration
e Weight new impact with regularization factor = 0.85
o Repeat until no changes
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Pagerank: Graphical example

1) Initialize
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Pagerank: Graphical example

2) Propagate along outgoing edges
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Pagerank: Graphical example

3) Sum up incoming contributions
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Pagerank: Graphical example

4) Apply regularization: x *0.85 + 0.15
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Pagerank: Graphical example

5) Update outgoing edges for second iteration
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Pagerank: Graphical example

6) Repeat until stabilized
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Mosaic: Design space

Graph Processing has many faces:

@ Single Machine

o Out-of-core
e In memory

@ Cluster

o Out-of-core
e In memory
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Mosaic: Design space

Graph Processing has many faces:

@ Single Machine

o Out-of-core = Cheap, but potentially slow
e In memory = Fast, but limited graph size

@ Cluster

o Out-of-core = Large graphs, but expensive & slow
e In memory = Large graphs & fast, but very expensive
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Mosaic: Design space

Graph Processing has many faces:

@ Single Machine

o Out-of-core = Cheap, but potentially slow
e In memory = Fast, but limited graph size

o Cluster
o Out-of-core = Large graphs, but expensive & slow
e In memory = Large graphs & fast, but very expensive

= Single machine, out-of-core is most cost-effective
= Goal: Good performance and large graphs!

Steffen Maass Mosaic: Trillion Edges on a Single Machine June 8, 2017 8 /28



Mosaic: Design goals

Run algorithms on very large graphs on a single machine using coprocessors \

Enabled by:

e Common, familiar API (vertex/edge-centric)

@ Encoding: Lossless compression
@ Cache locality
°

Processing on isolated subgraphs

Steffen Maass Mosaic: Trillion Edges on a Single Machine June 8, 2017 9 /28



Architecture of Mosaic

@ Usage of Xeon Phi & NVMe

@ Involvement of Host

<current state> <next state>
Global et — — - —
vertexstate [ 117 ii o Pi| [EiiiE - i) sipped
Host .
Processors | fetch | | receive cee
(Xeon) per Xeon Phi
\ Mot (*4)
(X 6) '>}t/‘a1;;lér
PCle
Tile
transfer
// edge a/. ..
processing (%61 cores)
NVMe Xeon Phi -
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Graph encoding: ldea

Compression

Split graph into subgraphs, use local (short) identifiers

Cache locality

@ Inside subgraphs: Sort by access order

@ Between subgraphs: Overlap vertex sets
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Background: Column first

o Locality for write
@ Multiple sequential reads

Target vertex
1 23456 7 89101112

1

2

3 |, P Pis

4

5

6 |pr., 2 2

7

8

9 P33 P3; P33 L
10 i
11 i
12 [P Pz Pus ‘ !
Source  Global adjacency - 4 =
vertex matrix Partition-*

(8=3)
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Background: Row first

@ Locality for read
@ Multiple sequential writes

Target vertex
1 23456 7 89101112

1

2

3 |, P P Pia

4

5

6 |r.. P,, P Pya

7

8

9 |ps P Pss T s
10 i
11 > i
12 |Pa Paz [ Pas !
Source  Global adjacency - A
vertex matrix Partition*

(8=3)
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Background: Hilbert order

@ Space-filling curve
@ Provides locality between adjacent data points

Steffen Maass

Target vertex
1 23456 7 89101112

1

2 —>

3 |p., P, Pis P

4

5

6 |r.. P,, Ps P

7

8

9 |p.. P Pss BLEZINN R
10
11
12 |Pa Ps> Pa3 Pas
Source  Global adjacency - A
vertex matrix Partition*

(8=3)

Mosaic: Trillion Edges on a Single Machine

June 8, 2017
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From global to local: Tiles

@ Convert graph to set of tiles
1) Start with adjacency Matrix:

Target vertex
12345678910I1112

1

2 —>

3 P P

4

5

6 Py Pae

7

8

9 P33 Pas
10 :
11 i
12 |Pa Py Pas Pas !
%ggr:xe Global adjacency Partition-“

matrix (S=3)

Steffen Maass Mosaic: Trillion Edges on a Single Machine June 8, 2017 15 / 28



From global to local: Tiles

@ Convert graph to set of tiles
2) Use first edge in tile Ty:

Target vertex (global)
1234567 89101112 Tile-1 (T))

[ © %@
2
@

3 meta (I,)
4 @ @

5 (local) (@2)

6

7

8

9 1
10 H

11 i
12 |Pa Py Pz Pas 1

Source === =’(D : local vertex id
vertex ~ Global adjacency p,.i/io .2 AECD,(E : local — global id
(global) matrix (S=3) @ : local edge store order
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From global to local: Tiles

@ Convert graph to set of tiles
3) Use more edges in tile T;:

Target vertex (global)
1234567 89101112 Tile-1 (T))

1
2 (2)
@
3 meta (I,)
4 @nEs
5 (local) (@2)
6
7
8
9 1
10 H
11 i
. ': local vertex id
Source . Sm————— =D : local vertex i
vertex ~ Global adjacency Partition—"z@ﬁ? : local — global id
(global) matrix (S=3) @ : local edge store order
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From global to local: Tiles

@ Convert graph to set of tiles
4) Use more edges in tile T;:

Target vertex (global)
1234567 89101112 Tile-1 (T))

1
2
3 meta (I,)
4 Q@ MH(@S)
5 (local) (22)(@4)
6
7
8
9 1
10 H
11 i
. ': local vertex id
Source . Sm————— =D : local vertex i
vertex ~ Global adjacency Partition—"z@ﬁ? : local — global id
(global) matrix (S=3) @ : local edge store order
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From global to local: Tiles

@ Convert graph to set of tiles
5) Use more edges in tile T;:

Target vertex (global)
1234567 89101112 Tile-1 (T))

) N
3 |p, Py P meta (I,
4 @ MH(@S)
5 (local) (22)(@4)
6 [pa Pas Pa
7
8
9 [P P53 i
10 :
11 i
12 |pa Pes Pas !
Source ] === =’(D : local vertex id
vertex ~ Global adjacency Partition—"z@ﬁ? : local — global id
(global) matrix (S=3) @ : local edge store order
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From global to local: Tiles

@ Convert graph to set of tiles

6) Next edges do not fit in T; anymore, construct Ts:

Target vertex (global)
1234567 89101112 Tile-1 (T))

1

2

3

4 @ MNHBYS)

5 (local)  (22)(@x4)

6 Tile-2 (T,)

7 O\

(5]

8 £ X

) ERNZS
10 {9 Tmetany
11 i @MHBS)
12 E (local)  (2,6)(@)3)
Source ] e =/ : local vertex id
vertex ~ Clobal a;i_].acency Partition—"z@l) : local — global id
(global) matrx (S=3) @ : local edge store order
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Locality with Hilb dered tiles

@ Overlapping sets of sources and targets

Target vertex

2 3 4 56789101112

[}
[l
Eoel e

1

2 —
53 E Py Pis
4

5

6 |p,, Pys

7

8

9 |Px PLEY
10 | i
11 : i
12 |Pa ; Py :

(Pp——— et )
?/(;'ltrec; Global adj‘acency Partition-'[
matrix (S=3)

= Better locality than row-first or column-first
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From global to local: Data structure

1) Split original graphs into two subgraphs:
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From global to local: Data structure

2) Internal data structure of Tj:

Index Edges

local global src  tgt
O 4 @@
@ 6 03 i
® 5 0O @
@ 3 0 Q &:
0 @

2B 2B

sorted by

Steffen Maass Mosaic: Trillion Edges on a Single Machine June 8, 2017 17 / 28



From global to local: Data structure

3) Compress edges: Compressed sparse rows

Index Edges
local global src  tgt src (tgt,#tgt)
D 4 i enH®.2)
® 5 ed@ o1y
@ 3 0@ @ 0@ BHE
003 @ eQ g
2B S oige;\by compressed

= Efficient, local encoding, sequentially accessed
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From global to local: Summary

@ Better locality
o Efficient encoding of local graphs
o Effect: up to 68% reduction in data size:

Graph #fvertices #edges Raw data Mosaic size (red.)
*rmat24 16.8M 0.3B 2.0GB 1.1GB (—45.0%)
twitter 41.6 M 15B 10.9GB 7.7GB (—29.4%)
“rmat27 134.2M 2.1B 16.0GB 11.1GB (—30.6%)
uk2007-05 105.8M 3.7B 27.9GB 8.7GB (—68.8%)
hyperlink14  1,724.6 M 64.4B  480.0GB  152.4GB (—68.3%)
*rmat-trillion  4,2949M 1,000.0B 8,000.0GB 4,816.7 GB (—39.8%)
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API: Pagerank example

@ Pull: Gather per edge information
@ Reduce: Combine results from multiple subgraphs
@ Apply: Calculate non-associative regularization

Edge-centric operation

o 1 //On edge processor (co-processor)
< Z 2 //Edge e = (Vertex src, Vertex tgt)
s 0 3 def Pull(Vertex src, Vertex tgt):
an en
—.£ 4 return src.val/ src.out_degree
82 -
S8 5 //Onedge processor/global reducers (both)
g_ 6 def Reduce(Vertex v,, Vertex v,): =
[
7 return v,.val + v,.val £
8 // On global reducers (host) E §
9 def Apply(Vertex v): g g
10 wvval=(1-0a)+axvval

Vertex-centric operation

. _ Pagerank,
Formula: Pagerank, = a x (ZueNeighborhood(V) Waeu”) +(1—-a)

Steffen Maass Mosaic: Trillion Edges on a Single Machine June 8, 2017 19 / 28



API: Pagerank example

1) Start with T;

Host
1 2 3 4 5 6 1 2 3 4 5 6
» [1.001.0011.001.001.00 1.00| [0.000.000.000.000.000.00] -

next state

—>  [0.000.000.000.00

meta (I;)
DG ;
@n@9 Xeon Phi-
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API: Pagerank example

2) Execute Pull along all edges in Ty

Host
1 2 3 4 5 6 1 2 3 4 5 6
» [1.001.0011.001.001.00 1.00| [0.000.000.000.000.000.00] -

next state

—_— 0.00.0.50:0.83:1.00

meta (Iy)
DHE :
@2@4 Xeon Phi -
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API: Pagerank example

3) Reduce all updates from T; onto next state

Host
. 1 2 3 4 5 6 1 2 3 4 5 6
» [1.001.0011.001.001.00 1.00| 0.000.500.001.000.830.00] -
next state .
T P R
2@
—>  [0.000.500.831.00
meta (I;)
@23 -
Xeon Phi-
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API: Pagerank example

4) Switch to T;

Host
1 2 3 4 5 6 1 2 3 4 5 6
» [1.001.0011.001.001.00 1.00| 0.000.500.001.000.830.00] -

next state

—>  [0.000.000.000.00

meta (I,)
D@3 :
@6@3) Xeon Phi -
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API: Pagerank example

5) Pull all updates

Host
. 1 2 3 4 5 6 1 2 3 4 5 6
» [1.001.0011.001.001.00 1.00| 0.000.500.001.000.830.00] -
current state* next state .
T
033 Pull(e)
41—® —>  [0.000.830.001.83
0.5 meta (I,)
@0 @) -
Xeon Phi-
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API: Pagerank example

6) Reduce updates from T,

Host
. 1 2 3 4 5 6 1 2 3 4 5 6
» [1.001.0011.001.001.00 1.00| 0.000.501.831.000.830.83] -
next state .
S R
2@
—>  [0.000.830.001.83
meta (I,)
@6 -
Xeon Phi-
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API: Pagerank example

7) All tiles processed, Apply processed updates

Host Apply(v)
. 1 2 3 4 5 6 1 2 3 4 5 6
» [1.001.0011.001.001.00 1.00| o.150.581.711.000.86 0.86| -

next state

—>  [0.000.830.001.83

meta (1)
D@3 :
@6@3) Xeon Phi -
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API: Pagerank example

8) Switch current and next state, clear next state for second iteration

Host
1 2 3 4 5 6 1 2 3 4 5 6
- [0.150.5811.711.000.86 0.86| [0.00:0.000.000.000.000.00] -

next state

—>  [0.000.000.000.00

meta (I;)
DG ;
@n@9 Xeon Phi-
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Evaluation

Questions:
@ Preprocessing Cost
@ Performance (in comparison)
@ Impact of Design Decisions
@ Scalability
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Evaluation - Setup

@ Single Server:

2 sockets, 12 cores each
768GB RAM

4 Xeon Phi (KNC, 61 cores)
e 6 NVMe (1.2TB each)

o 7 Algorithms
o 6 Datasets (3 real world, 3 synthetic)
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Preprocessing

@ Mosaic needs explicit preprocessing step
@ 2-4 min for small datasets, 51 minutes for webgraph, 31 hours for
trillion edges
@ But: Can be amortized during execution:
o GridGraph: Mosaic faster after

o twitter: 20 iterations
o uk2007: 8 iterations

o X-Stream: Mosaic faster after

@ twitter: 8 iterations
@ uk2007: 5 iterations
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Performance comparison

@ Comparison to other single machine engines with Pagerank:

Mosaic
100 |-GridGraph manas
X-Stream s
—~80 GraphChi mmmmm
kel
c
o
(9]
\&_/60 -
v
£
540
3
o
20 -
0

rmat24 twitter rmat27 uk2007-05
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Performance comparison

@ Comparison to other single machine engines with Pagerank:

100 b Mosaic mmmm
F GridGraph maaam

[ X-Stream mmm
5 | GraphChi mm
9]

;8/10 F

° 3

£

S

c

3

o 1k

w F

8 3

o
i

rmat24 twiter rmat27 uk207-05

= Mosaic outperforms other system by 2.7 xto 58.6x
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ed tiles: Cache locality

@ Cache misses and execution times for three different strategies

100 - : 35 -
Hilbert mmmmm
Row-First momsmm 30 |
80 Column-First v
* L
560 - i
2
=
@40 |- B
Q
(0]
N L
20

Pagerank FS W

rank  BFS  WCC

Page cC

= Hilbert-ordered tiles have up to 45% better cache locality,
up to 43% reduction in runtime
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Evaluation - Scalability

@ Dimensions

o Add Xeon Phis/NVMes
o Add threads on each Xeon Phi

40

3]
L N R S O
g€ 30+ A - - L L
~ 25 L i L ; L x)?e L=

0 A K 3

S 20 | - L )<X % -;E

S 15 L : - . b X L . [] .

© X X *

[ 10F —/"/F ?’ r r

= 5l v _ @ T @ L 3 L @
:ﬁ: Il Il J Il Il J

Il J Il Il Il Il Il Il J Il Il Il J
1 2 3 4 30405060 30405060 30405060 30405060
# pair of Phi+NVMe — Xeon Phi threads —

= Mosaic scales well when adding threads/Xeon Phis
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Conclusion

@ Mosaic, a graph processing engine for trillion edge graphs on a single
machine
@ Hilbert-ordered tiles allow:

o Enable localized processing on coprocessors
o Optimizes cache locality
o Enables compression

Code is open-source: https://github.com/sslab-gatech/mosaic
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https://github.com/sslab-gatech/mosaic

Thank you!

Steffen Maass
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Evaluation - Selective scheduling

@ Skip subgraphs without active vertices
@ Especially useful for traversal algorithms: BFS, Connected

Components, ...
10k
KR -2
8k N
0 ( i y Tiles ——- 15
= RV i Time w/o Selective Scheduling ---%--- o
:6k*‘, * i R Time Selective Scheduling ----- ﬁ
> \ i N
5 l“ ! \“ — 1 (]
cakF4g ~ X, E
H* \ \
‘\ " Xs
kL ¥ - 05
0k L I ) ! ! 20 SRR VIRV 0
2 4 6 8 10 12 14 6
# iteration

= 2.2xspeedup for BFS on twitter graph
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Evaluation - Dynamic load balancing

o Effect of choosing the wrong load balancing scheme
@ Mosaic has light-weight balancing scheme

16
14 L optimal m——
one PR
12 optimal*10
5
& 10
3
< gL
£
5 6
c
3
X 4l
2L
0

Pagerank BFS WCC SpMV TC

= Up to 5.8 ximprovement in running time by choosing correct load
balancing scheme
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Mosaic architecture

@ Host and Xeon Phi component

@ Streaming-based design

<current state> <next state>

per Global
socket reducers

(memory locality)
/1

Global
vertex state

stripped

Host
Processors cee
eon, . i
(Xeon) (T,,-3) (T, 1) per Xeon Phi
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Meta El -

(local, own memory)

transfer (Tl’ [ ])
PCle

messaging via

(%61 cores) ring buffer
data transfer
tile
[ | meta
Tile Prefetching ' Active tiles [1 luu)z{ r{;zta
NVMe processin (concurrent 1/0) per tile
[ process

Xeon Phi -
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