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Large NUMA machines

Terabytes of memory

Microsecond latency

⇒ Problem of Microsecond Latency in System Services
⇒ TLB Coherence is Contributor in Important Subset



Impact of TLB coherence on applications

Multi-core MapReduce application

Prior research: 10x increase in shootdown time with increasing core
counts

Web servers (e.g., Apache)

Prior research and our findings: ≈35% of time spent in TLB
shootdown

Die-stacked Memory

Swapping between on-chip and off-chip memory

Disaggregated Memory

Swapping between local and remote memory

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 3 / 24



Impact of TLB coherence on applications

Multi-core MapReduce application

Prior research: 10x increase in shootdown time with increasing core
counts

Web servers (e.g., Apache)

Prior research and our findings: ≈35% of time spent in TLB
shootdown

Die-stacked Memory

Swapping between on-chip and off-chip memory

Disaggregated Memory

Swapping between local and remote memory

⇒ Can we mitigate this costly TLB shootdown?
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Translation lookaside buffer: Introduction

Cache for virtual → physical mapping, per-core structures

Accessed on every load/store

Unlike data caches (L3, etc.), coherence managed by OS

TLB coherence significantly impacts application performance

Virtual Address

PGD

PUD

PMD

PTETLB

Hit:
Physical
Address

Miss:
Page Table
Walk Physical

Address
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TLB coherence: Background

Hardware-based Approaches
Providing cache coherence to TLBs
ISA-level instruction support (ARM)
Microcode-based approaches

Software-based Approaches
Current commodity OS design: Use Inter-Processor Interrupts (IPI)
Optimization: Reduce number of shootdowns, better tracking
Multikernel design: Use Message-Passing
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⇒ More Hardware Complexity

⇒ TLB shootdowns still significant



TLB shootdown internals in Linux

munmap() on core 1, application running on cores 1, 2, and 5:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ...

❶

OS

TLBTLB TLB TLB TLBTLB TLB TLB

❶Timeline:

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8
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TLB shootdown internals in Linux

Context switch on core 1, local TLB shootdown:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

TLBTLB TLB TLB TLBTLB TLB TLB

❷

❶ ❷Timeline:

❶ munmap()
❷ Local Shootdown

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8
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TLB shootdown internals in Linux

Notify cores 2 and 5 via IPI, application blocked on core 1:

TLBTLB TLB TLB TLBTLB TLB TLB

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

❸
Spin-
wait

❸❶ ❷
2.2µs

Timeline:

❶ munmap()
❷ Local Shootdown
❸ Send IPIs

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8
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TLB shootdown internals in Linux

Execute context switch and TLB shootdown on cores 2 and 5:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

TLBTLB TLB TLB TLBTLB TLB TLB

❹ ❹
Spin-
wait

❹❸❶ ❷
2.2µs

Timeline:

❶ munmap()
❷ Local Shootdown
❸ Send IPIs
❹ Remote Shootdown

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8
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TLB shootdown internals in Linux

Cores 2 and 5 respond ACK via shared memory:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

TLBTLB TLB TLB TLBTLB TLB TLB

❺ ❺
Spin-
wait

❺❹❸❶ ❷
2.2µs

Timeline:

❶ munmap()
❷ Local Shootdown
❸ Send IPIs
❹ Remote Shootdown
❺ IPI ACK

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8
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TLB shootdown internals in Linux

Control is returned on all cores, TLB shootdown completed:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

❻

TLBTLB TLB TLB TLBTLB TLB TLB

❻❺❹❸❶ ❷
2.2µs

Timeline:

5.9µs}
Savings potential for asynchronous
approach with LATR

❶ munmap()
❷ Local Shootdown
❸ Send IPIs
❹ Remote Shootdown
❺ IPI ACK

munmap() complete❻
Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8
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Observation

Synchronous TLB shootdown is expensive:
Up to 6µs delay with two sockets

Processing IPIs is expensive:
Interrupt handler on remote core
Long wait time on initiating core

IPI send-and-wait delay:
Unicast delivery of the IPIs (one at a time)
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TLB shootdown: A necessary evil

Cost of a simple memory unmap operation (munmap()):

1 page on 16 cores with 2 sockets: up to 8µs
≈ 70% from TLB shootdown alone

More expensive with more sockets:
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In this talk: Latr

Latr: Lazy Translation Coherence

Perform asynchronous TLB shootdown
Remove remote shootdown from the critical path
Take advantage of change in ABI without affecting applications’
correctness

Use shared memory instead of IPI
Eliminate send-and-wait delay of IPIs

Scope:
free operations (in this talk)
migration operations (see our paper)
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In this talk: Latr

Latr: Lazy Translation Coherence

Perform asynchronous TLB shootdown
Remove remote shootdown from the critical path
Take advantage of change in ABI without affecting applications’
correctness

Use shared memory instead of IPI
Eliminate send-and-wait delay of IPIs

Scope:
free operations (in this talk)
migration operations (see our paper)

⇒ But: How to perform asynchronous shootdown?
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Latr States

Store virtual addresses to be flushed

Remote cores shootdown local TLB during

OS context switch
OS scheduler tick (upper bound: 1ms in Linux)

Core5 Core6 Core7 Core8

TLB TLB TLB TLB

LATR
States

LATR
States

LATR
States

LATR
States

...S1: start; end; mm; flags; Core list; active S2 S64

LATR States Core1

Cache Coherency

QPI

Core1 Core2 Core3 Core4

TLB TLB TLB TLB

LATR
States

LATR
States

LATR
States

LATR
States
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Latr: Example

munmap() initiated on core 1:

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

❶

❶Timeline:
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LATR
States

LATR
States

LATR
States

LATR
States

LATR
States
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Latr: Example

Set up Latr state (for cores 2 and 5), local shootdown:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

start end
0x01 0x0F

mm Core list active
0x1234 {2, 5} True

Core1, LATR State1:

flags
0x1

Timeline:

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State

❸

❶❶ ❷ ❸
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Latr: Example

Return control on core 1. Time taken: 2.3µs, 70% reduction:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

❶Timeline:

start end
0x01 0x0F

mm Core list active
0x1234 {2, 5} True

Core1, LATR State1:

flags
0x1

2.3µs

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State
❹ munmap() complete

❶ ❷ ❸ ❹

❹
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Latr: Example

Scheduler tick on core 2, local shootdown, reset state:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

start end
0x01 0x0F

mm Core list active
0x1234 {5} True

Core1, LATR State1:

flags
0x1

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State
❹ munmap() complete
❺ Shootdown Core2

❺

❺
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Latr: Example

Scheduler tick on core 5, local shootdown, reset state:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

start end
0x01 0x0F

mm Core list active
0x1234 {} False

Core1, LATR State1:

flags
0x1

❻
Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State
❹ munmap() complete
❺ Shootdown Core2

❻ Shootdown Core5

❻
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Latr: Example

Shootdown complete, Latr entry can be reused:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

start end
0x01 0x0F

mm Core list active
0x1234 {} False

Core1, LATR State1:

flags
0x1

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State
❹ munmap() complete
❺ Shootdown Core2

❻ Shootdown Core5
❼ Shootdown complete
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Lazy TLB shootdown: Correctness

Same physical memory or virtual memory is reused

Leads to memory corruption

⇒ Avoid same physical/virtual page reuse

Upper bound for TLB shootdown with Latr is 1ms
OS physical/virtual memory reclamation delayed by two scheduler ticks
(2ms)
Memory overhead is bounded by 21MB
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Lazy TLB shootdown: Incorrect accesses

Memory accesses before Latr shootdown:

Consequence of incorrect application: Use After Free
Before Latr shootdown, access (reads and writes) allowed
Exists in the current OS implementation
After Latr shootdown, access results in segmentation fault
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Scope of Latr

ABI change for free operations

Support for operations limited to few, frequently used operations:

Classification Operations
Lazy operation

possible

Free
munmap(): unmap address range ✓
madvise(): free memory range ✓

Migration
AutoNUMA page migration (⇒ See paper) ✓
Page swap: swap page to disk ✓

Permission mprotect(): change page permission -

Ownership CoW: Copy on Write -

Remap mremap(): change physical address -
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Evaluation: Questions

Latr prototype developed for Linux 4.10

Evaluation questions

What are Latr’s benefits with microbenchmarks?
What are Latr’s benefits with real-world applications exhibiting many
TLB shootdowns?
What is the cost for Latr?
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Microbenchmark on eight sockets

Linux and Latr calling munmap() with one page on 120 cores:
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⇒ Up to 66.7% reduction for munmap()
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Serving files with Apache

Linux, ABIS [ATC17], and Latr on 2 sockets:
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⇒ Up to 59.9% more requests
second than Linux, 37.9% higher than ABIS.
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Cost of Latr

Memory overhead is bounded by 21MB

Performance overheads for applications with few TLB shootdowns:
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⇒ Latr shows small performance overheads of up to 1.7% due to added
operations during scheduling.
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Future work

Further applications of Latr in:

Disaggregated data centers

Heterogeneous memory

Applicability to PCID/ASID-based approaches

Impact on new features such as KPTI, . . . ?
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Latr: Takeaways

The synchronous TLB shootdown is expensive

We propose a software-based asynchronous shootdown mechanism

Significant improvement in application performance with Latr

70% reduction for munmap(), for 16-core and 120-core machines
Improves Apache’s throughput by 60%

Asynchronous mechanism applicable to other services:

AutoNUMA (see our paper)
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We propose a software-based asynchronous shootdown mechanism

Significant improvement in application performance with Latr

70% reduction for munmap(), for 16-core and 120-core machines
Improves Apache’s throughput by 60%

Asynchronous mechanism applicable to other services:

AutoNUMA (see our paper)

Thanks!
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