
Latr: Lazy Translation Coherence

Mohan Kumar*, Steffen Maass*, Sanidhya Kashyap, Ján Veselý‡,
Zi Yan‡, Taesoo Kim, Abhishek Bhattacharjee‡, Tushar Krishna

Georgia Institute of Technology ‡Rutgers University

* Co-First Authors

March 28, 2018

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 1 / 24



Motivation

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 2 / 24

Large NUMA machines



Motivation

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 2 / 24

Large NUMA machines

Terabytes of memory



Motivation

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 2 / 24

Large NUMA machines

Terabytes of memory

Microsecond latency



Motivation

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 2 / 24

Large NUMA machines

Terabytes of memory

Microsecond latency

⇒ Problem of Microsecond Latency in System Services
⇒ TLB Coherence is Contributor in Important Subset



Impact of TLB coherence on applications

Multi-core MapReduce application

Prior research: 10x increase in shootdown time with increasing core
counts

Web servers (e.g., Apache)

Prior research and our findings: ≈35% of time spent in TLB
shootdown

Die-stacked Memory

Swapping between on-chip and off-chip memory

Disaggregated Memory

Swapping between local and remote memory

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 3 / 24



Impact of TLB coherence on applications

Multi-core MapReduce application

Prior research: 10x increase in shootdown time with increasing core
counts

Web servers (e.g., Apache)

Prior research and our findings: ≈35% of time spent in TLB
shootdown

Die-stacked Memory

Swapping between on-chip and off-chip memory

Disaggregated Memory

Swapping between local and remote memory

⇒ Can we mitigate this costly TLB shootdown?

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 3 / 24



Table of contents

1 TLB Shootdown Background

2 Latr: Asynchronous TLB Shootdowns

3 Evaluation

4 Conclusion

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 4 / 24



Table of contents

1 TLB Shootdown Background

2 Latr: Asynchronous TLB Shootdowns

3 Evaluation

4 Conclusion

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 5 / 24



Translation lookaside buffer: Introduction

Cache for virtual → physical mapping, per-core structures

Accessed on every load/store

Unlike data caches (L3, etc.), coherence managed by OS

TLB coherence significantly impacts application performance

Virtual Address

PGD

PUD

PMD

PTETLB

Hit:
Physical
Address

Miss:
Page Table
Walk Physical

Address

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 6 / 24



TLB coherence: Background

Hardware-based Approaches
Providing cache coherence to TLBs
ISA-level instruction support (ARM)
Microcode-based approaches

Software-based Approaches
Current commodity OS design: Use Inter-Processor Interrupts (IPI)
Optimization: Reduce number of shootdowns, better tracking
Multikernel design: Use Message-Passing

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 7 / 24



TLB coherence: Background

Hardware-based Approaches
Providing cache coherence to TLBs
ISA-level instruction support (ARM)
Microcode-based approaches

Software-based Approaches
Current commodity OS design: Use Inter-Processor Interrupts (IPI)
Optimization: Reduce number of shootdowns, better tracking
Multikernel design: Use Message-Passing

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 7 / 24

⇒ More Hardware Complexity

⇒ TLB shootdowns still significant



TLB shootdown internals in Linux

munmap() on core 1, application running on cores 1, 2, and 5:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ...

❶

OS

TLBTLB TLB TLB TLBTLB TLB TLB

❶Timeline:

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 8 / 24



TLB shootdown internals in Linux

munmap() on core 1, application running on cores 1, 2, and 5:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ...

❶

OS

TLBTLB TLB TLB TLBTLB TLB TLB

❶Timeline:

❶ munmap()

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 8 / 24



TLB shootdown internals in Linux

Context switch on core 1, local TLB shootdown:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

TLBTLB TLB TLB TLBTLB TLB TLB

❷

❶ ❷Timeline:

❶ munmap()
❷ Local Shootdown

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 8 / 24



TLB shootdown internals in Linux

Notify cores 2 and 5 via IPI, application blocked on core 1:

TLBTLB TLB TLB TLBTLB TLB TLB

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

❸
Spin-
wait

❸❶ ❷
2.2µs

Timeline:

❶ munmap()
❷ Local Shootdown
❸ Send IPIs

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 8 / 24



TLB shootdown internals in Linux

Execute context switch and TLB shootdown on cores 2 and 5:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

TLBTLB TLB TLB TLBTLB TLB TLB

❹ ❹
Spin-
wait

❹❸❶ ❷
2.2µs

Timeline:

❶ munmap()
❷ Local Shootdown
❸ Send IPIs
❹ Remote Shootdown

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 8 / 24



TLB shootdown internals in Linux

Cores 2 and 5 respond ACK via shared memory:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

TLBTLB TLB TLB TLBTLB TLB TLB

❺ ❺
Spin-
wait

❺❹❸❶ ❷
2.2µs

Timeline:

❶ munmap()
❷ Local Shootdown
❸ Send IPIs
❹ Remote Shootdown
❺ IPI ACK

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 8 / 24



TLB shootdown internals in Linux

Control is returned on all cores, TLB shootdown completed:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

❻

TLBTLB TLB TLB TLBTLB TLB TLB

❻❺❹❸❶ ❷
2.2µs

Timeline:

5.9µs}
Savings potential for asynchronous
approach with LATR

❶ munmap()
❷ Local Shootdown
❸ Send IPIs
❹ Remote Shootdown
❺ IPI ACK

munmap() complete❻
Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 8 / 24



Observation

Synchronous TLB shootdown is expensive:
Up to 6µs delay with two sockets

Processing IPIs is expensive:
Interrupt handler on remote core
Long wait time on initiating core

IPI send-and-wait delay:
Unicast delivery of the IPIs (one at a time)

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 9 / 24



TLB shootdown: A necessary evil

Cost of a simple memory unmap operation (munmap()):

1 page on 16 cores with 2 sockets: up to 8µs
≈ 70% from TLB shootdown alone

More expensive with more sockets:

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

1 Socket

L
a
te
n
cy

(µ
s)

Cores

munmap()

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 10 / 24



TLB shootdown: A necessary evil

Cost of a simple memory unmap operation (munmap()):

1 page on 16 cores with 2 sockets: up to 8µs
≈ 70% from TLB shootdown alone

More expensive with more sockets:

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

1 Socket 2 Sockets

L
a
te
n
cy

(µ
s)

Cores

munmap()

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 10 / 24



TLB shootdown: A necessary evil

Cost of a simple memory unmap operation (munmap()):

1 page on 16 cores with 2 sockets: up to 8µs
≈ 70% from TLB shootdown alone

More expensive with more sockets:

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

L
a
te
n
cy

(µ
s)

Cores

munmap()
TLB Shootdown

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 10 / 24



Table of contents

1 TLB Shootdown Background

2 Latr: Asynchronous TLB Shootdowns

3 Evaluation

4 Conclusion

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 11 / 24



In this talk: Latr

Latr: Lazy Translation Coherence

Perform asynchronous TLB shootdown
Remove remote shootdown from the critical path
Take advantage of change in ABI without affecting applications’
correctness

Use shared memory instead of IPI
Eliminate send-and-wait delay of IPIs

Scope:
free operations (in this talk)
migration operations (see our paper)

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 12 / 24



In this talk: Latr

Latr: Lazy Translation Coherence

Perform asynchronous TLB shootdown
Remove remote shootdown from the critical path
Take advantage of change in ABI without affecting applications’
correctness

Use shared memory instead of IPI
Eliminate send-and-wait delay of IPIs

Scope:
free operations (in this talk)
migration operations (see our paper)

⇒ But: How to perform asynchronous shootdown?

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 12 / 24



Latr States

Store virtual addresses to be flushed

Remote cores shootdown local TLB during

OS context switch
OS scheduler tick (upper bound: 1ms in Linux)

Core5 Core6 Core7 Core8

TLB TLB TLB TLB

LATR
States

LATR
States

LATR
States

LATR
States

...S1: start; end; mm; flags; Core list; active S2 S64

LATR States Core1

Cache Coherency

QPI

Core1 Core2 Core3 Core4

TLB TLB TLB TLB

LATR
States

LATR
States

LATR
States

LATR
States

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 13 / 24



Latr: Example

munmap() initiated on core 1:

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

❶

❶Timeline:

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 14 / 24



Latr: Example

munmap() initiated on core 1:

App1 Idle IdleApp2 App5 Idle IdleIdle

Application

Operating System

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

❶

❶Timeline:

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 14 / 24



Latr: Example

Set up Latr state (for cores 2 and 5), local shootdown:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

start end
0x01 0x0F

mm Core list active
0x1234 {2, 5} True

Core1, LATR State1:

flags
0x1

Timeline:

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State

❸

❶❶ ❷ ❸

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 14 / 24



Latr: Example

Return control on core 1. Time taken: 2.3µs, 70% reduction:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

❶Timeline:

start end
0x01 0x0F

mm Core list active
0x1234 {2, 5} True

Core1, LATR State1:

flags
0x1

2.3µs

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State
❹ munmap() complete

❶ ❷ ❸ ❹

❹

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 14 / 24



Latr: Example

Scheduler tick on core 2, local shootdown, reset state:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

start end
0x01 0x0F

mm Core list active
0x1234 {5} True

Core1, LATR State1:

flags
0x1

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State
❹ munmap() complete
❺ Shootdown Core2

❺

❺

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 14 / 24



Latr: Example

Scheduler tick on core 5, local shootdown, reset state:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

start end
0x01 0x0F

mm Core list active
0x1234 {} False

Core1, LATR State1:

flags
0x1

❻
Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State
❹ munmap() complete
❺ Shootdown Core2

❻ Shootdown Core5

❻

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 14 / 24



Latr: Example

Shootdown complete, Latr entry can be reused:

App1 Idle IdleApp2 App5 Idle IdleIdle

OS OS ... OS

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

LATR
States

start end
0x01 0x0F

mm Core list active
0x1234 {} False

Core1, LATR State1:

flags
0x1

Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8

❶ munmap()
❷ Local Shootdown
❸ Create LATR State
❹ munmap() complete
❺ Shootdown Core2

❻ Shootdown Core5
❼ Shootdown complete

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 14 / 24



Lazy TLB shootdown: Correctness

Same physical memory or virtual memory is reused

Leads to memory corruption

⇒ Avoid same physical/virtual page reuse

Upper bound for TLB shootdown with Latr is 1ms
OS physical/virtual memory reclamation delayed by two scheduler ticks
(2ms)
Memory overhead is bounded by 21MB

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 15 / 24



Lazy TLB shootdown: Incorrect accesses

Memory accesses before Latr shootdown:

Consequence of incorrect application: Use After Free
Before Latr shootdown, access (reads and writes) allowed
Exists in the current OS implementation
After Latr shootdown, access results in segmentation fault

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 16 / 24



Scope of Latr

ABI change for free operations

Support for operations limited to few, frequently used operations:

Classification Operations
Lazy operation

possible

Free
munmap(): unmap address range ✓
madvise(): free memory range ✓

Migration
AutoNUMA page migration (⇒ See paper) ✓
Page swap: swap page to disk ✓

Permission mprotect(): change page permission -

Ownership CoW: Copy on Write -

Remap mremap(): change physical address -

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 17 / 24



Table of contents

1 TLB Shootdown Background

2 Latr: Asynchronous TLB Shootdowns

3 Evaluation

4 Conclusion

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 18 / 24



Evaluation: Questions

Latr prototype developed for Linux 4.10

Evaluation questions

What are Latr’s benefits with microbenchmarks?
What are Latr’s benefits with real-world applications exhibiting many
TLB shootdowns?
What is the cost for Latr?

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 19 / 24



Microbenchmark on eight sockets

Linux and Latr calling munmap() with one page on 120 cores:

0

20

40

60

80

100

120

140

20 40 60 80 100 120

Cost of munmap

20 40 60 80 100 120
0

20

40

60

80

100

120

140
Cost of TLB Shootdown

L
a
te
n
cy

(µ
s)

Cores

Linux
Latr

L
a
te
n
cy

(µ
s)

Cores

⇒ Up to 66.7% reduction for munmap()

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 20 / 24



Serving files with Apache

Linux, ABIS [ATC17], and Latr on 2 sockets:

0k

20k

40k

60k

80k

100k

120k

140k

160k

2 4 6 8 10 12

Apache Performance

2 4 6 8 10 12
0k

5k

10k

15k

20k

25k

30k

35k
TLB Shootdowns per second

R
eq

u
es
ts

p
er

se
co

n
d

Cores

Linux
ABIS
Latr

T
L
B

S
h
o
o
td
ow

n
s
p
er

se
co

n
d

Cores

⇒ Up to 59.9% more requests
second than Linux, 37.9% higher than ABIS.

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 21 / 24



Cost of Latr

Memory overhead is bounded by 21MB

Performance overheads for applications with few TLB shootdowns:

0.97

0.98

0.99

1.00

1.01

1.02

1.03

n
g
in
x 1

A
p
a
ch

e 1

b
o
d
yt
ra
ck

1
6

ca
n
n
ea
l 1
6

fa
ce
si
m

1
6

fe
rr
et

1
6

st
re
a
m
cl
u
st
er

1
6

0

20

40

60

80

100

O
ve
rh
ea
d

T
L
B

S
h
o
o
td
ow

n
s
p
er

se
cNormalized application performance
Shootdowns per second

⇒ Latr shows small performance overheads of up to 1.7% due to added
operations during scheduling.

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 22 / 24



Future work

Further applications of Latr in:

Disaggregated data centers

Heterogeneous memory

Applicability to PCID/ASID-based approaches

Impact on new features such as KPTI, . . . ?

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 23 / 24



Latr: Takeaways

The synchronous TLB shootdown is expensive

We propose a software-based asynchronous shootdown mechanism

Significant improvement in application performance with Latr

70% reduction for munmap(), for 16-core and 120-core machines
Improves Apache’s throughput by 60%

Asynchronous mechanism applicable to other services:

AutoNUMA (see our paper)

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 24 / 24



Latr: Takeaways

The synchronous TLB shootdown is expensive

We propose a software-based asynchronous shootdown mechanism

Significant improvement in application performance with Latr

70% reduction for munmap(), for 16-core and 120-core machines
Improves Apache’s throughput by 60%

Asynchronous mechanism applicable to other services:

AutoNUMA (see our paper)

Thanks!

Mohan Kumar Latr: Lazy Translation Coherence March 28, 2018 24 / 24


	TLB Shootdown Background
	Latr: Asynchronous TLB Shootdowns
	Evaluation
	Conclusion

