
Kaleidoscope: Graph Analytics on Evolving Graphs
Steffen Maass Taesoo Kim

Georgia Institute of Technology

ABSTRACT

Large-scale graphs and their analytics are common in many appli-
cations such as social networks, data mining, and machine learn-
ing. Many approaches to operate on static graphs of sizes in the
trillions of edges have been proposed and adopted. However, real-
world graphs are evolving in nature and are constantly changing
in many application domains. We observe that current systems
to process evolving graphs show three problems: they impose a
storage overhead when adding new edges and vertices, they involve
a synchronous compaction step to keep their internal data structures
optimized and they exhibit poor cache locality.

We proposeKaleidoscope—a graph processing engine for evolv-
ing graphs—that aims at tackling these three problems by the use
of a localized graph data structure, that is helpful in reducing both
the storage overhead as well as the overhead of the synchronous
compaction step. Kaleidoscope also enables the use of a locality-
optimizing space-filling curve, the Hilbert order, when traversing
the subgraphs built by Kaleidoscope, to allow for better cache
locality.

1 MOTIVATION

Graphs are the basic building blocks to solve various problems
ranging from data mining, machine learning, scientific computing
to social networks and the world wide web. However, with the
advent of Big Data, the sheer increase in size of the datasets [1]
poses fundamental challenges to existing graph processing engines.

While the area of graph analytics on large, static graphs has been
explored extensively for different setups like in-memory and on-
disk computing for both a single machine and a distributed system,
there exists a smaller body of work for the case of temporally evolv-
ing graphs. In these systems, we identify three problems: How to
reduce the storage overhead associated with processing an evolving
graph, how to avoid a synchronous compaction step, and how to
optimize for cache locality.

Current, state-of-the-art systems handling temporally evolving
graphs focus on the design of a data structure that can support
updates to the underlying graph structure as well as the kind of al-
gorithms that can be deployed using the abstractions needed to sup-
port graph updates. In particular, current systems, like LLAMA [5]
or EvoGraph [8], split the storage of the graph into two portions: An
inactive, compact portion, stored by using, for example, compressed
sparse rows (CSR) and an active portion, stored by using a simple
edge array to support inexpensive addition of edges [8]. Other de-
sign options for the active portion include delta snapshots [5] of
the CSR format or an adjacency list-like design where edges are
being appended to a per-vertex list as in Stinger [2].

Existing research approaches do not fulfill the important sys-
tem characteristics, such as reducing the storage overhead, the
compaction overhead, and improving the cache locality, needed

0.0

0.5

1.0

1.5

2.0

0M 2M 4M 6M 8M 10M

Insertion Cost per Batch

20k

40k

60k

80k

100k

120k

140k

0M 2M 4M 6M 8M 10M

Throughput of Insertions

In
se
rt
io
n
co
st
(s
)

Edges

In
se
rt
io
ns

(e
dg

es
/s
)

Edges

Figure 1: The cost per insertion of batch of edges and the resulting

insertion throughput in edges per second supported on Stinger. In-

sertion is being handled at batches of 25,000 edges every two sec-

onds and approaches a backlogged state when inserting another

batchwith tenmillion edges already being present in the graph. The

throughput of insertions collapses to 14,000 insertions per second,

highlighting the problem of Stinger’s adjacency-list based edge

storage design.

for efficiently processing evolving graphs. For example, existing
approaches to storing the additions to the graph lead to overheads
in terms of storage, by as much as a factor of two when switching
from the CSR format to edge lists.

We exemplify the problem of increased memory usage and drop-
ping insertion performance due to the design of the underlying
data structure with Stinger. We insert a total of ten million edges
with one million vertices into Stinger in batches of 25,000 edges,
using the RMAT algorithm. The batches are inserted every two
seconds, to give Stinger time to catch up with the insertion pro-
cess and the execution of the attached (evolving) algorithms, in
this case a simple Pagerank analysis. Figure 1 shows the cost per
batched insertion and the resulting throughput, in edges per second.
Stinger’s throughput drops significantly and, worse, non-linearly
with a larger number of edges already being present in the graph,
resulting in insertion times of almost two seconds when ten million
edges are already present in the graph with about 14,000 edges per
second as throughput. This behavior shows a significant bottleneck
of Stinger’s design of using adjacency lists and limits the applica-
bility of this technique to very small graphs: Popular graphs used

0

500

1000

1500

2000

2500

0M 2M 4M 6M 8M 10M

Used Memory

0.0

0.1

0.2

0.3

0.4

0.5

0M 2M 4M 6M 8M 10M

Pagerank Time (per iteration)

M
em

or
y
(M

B)

Edges

Pa
ge
ra
nk

ex
ec
ut
io
n
(s
)

Edges

Figure 2: The amount of memory used and the time taken per itera-

tion when executing the pagerank algorithm on Stinger. We start

with an empty graph and insert ten million edges generated using

the RMAT algorithm. The performance of pagerank visibly drops

with an increasing number of edges while the memory overhead

grows to more than 2GB with only ten million edges while a CSR-

style storage of the edgeswould result in less than 800MBof storage

requirements.

to evaluate graph processing systems usually have billions of edges
and hundreds of million of vertices [7, 10, 11].

We further show the amount of memory used by Stinger, using
the same scenario of inserting ten million edges in batches of 15,000
edges, along with the per-iteration cost of executing the Pagerank
algorithm. The results are shown in Figure 2 and exemplify the
problem of increased memory usage and the dropping performance
of an associated algorithm when running it on an evolving graph.
When inserting edges, Stinger’s memory requirements grow to
more than 2GB at ten million inserted edges, while the storage of
the same amount of edges in an optimized CSR-like format would
only amount to about 150MB. Even taking the overhead of Stinger
into account, this amount of overhead is not sustainable for larger
graphs, given the requirements of real-world applications of billions
of edges. The results also show that the cost per iteration of the
Pagerank algorithm, that is being run incrementally on the evolving
graph, increases with a higher-than-linear rate when inserting
more edges into the graph as an effect of Stinger’s data structure
design of using adjacency lists. This is further shown in Stinger’s
high last-level cache miss rates of close to 80% when executing the
Pagerank algorithm with concurrent edge insertions. These two
results motivate our work on Kaleidoscope, to overcome these
limitations to be able to store larger graphs and execute algorithms
on them efficiently.

Additionally, storing new edges in the overflow part of the graph
leads to difficulties when accessing all outgoing edges of a vertex:
While the CSR format allows easy traversal of outgoing edges, the
edge list format does not, in the worst case every edge in the list

has to be checked to decide whether or not the source vertex is
the vertex of interest. Worse yet, compacting the graph into the
efficient CSR format is only possible in a synchronous manner,
halting all insertions into the graph while temporarily suspending
the execution of algorithms as the graph is being compacted and
put into the CSR format. Finally, the traversal behavior of mixing
adjacency lists and edge lists using an overflow area can lead to
poor cache locality, as vertices are now being “randomly” traversed,
in the order given by the edge list.

Taking these important system characteristics into account, we
propose Kaleidoscope, a graph processing system for temporally
evolving graphs. Kaleidoscope looks at addressing three funda-
mental problems in the area of temporally evolving graph analytics:
How to design a system that reduces the storage overhead associ-
ated with current designs for evolving graphs, how to address the
problem of the synchronous, all-or-nothing approach to compaction
of the graph, and how to optimize for cache locality, a key goal
in graph analytics (both static and evolving). We now outline our
ideas for each of these problems and give background information
on how these kind of problems are tackled in the case of static
graph processing.

2 OVERVIEW

To tackle these problems in systems processing evolving graphs
we first outline an approach of how to optimize for locality and
compression in static graphs before applying similar, yet different
techniques to the case of evolving graphs with Kaleidoscope.

2.1 Static Design for Locality: Mosaic

We build upon previous work in the domain of graph analysis on
static graphs to derive a design for evolving graphs. In particular,
we take a look at Mosaic [4]: Its main contribution is a design
that optimizes the locality of accesses to the global vertex state
while allowing for compression and independent processing of sub-
graphs whose union makes up the overall graph. Mosaic employs
the Hilbert order, a space-filling curve, to optimize the locality of
accesses to the vertex array when traversing the subgraphs built
by Mosaic.

However,Mosaic’s internal structure is tailored to executing on
a static graph only, by tightly packing the adjacency list and using
shorter, local identifiers that leave no room for further vertex inser-
tions and is thus not suited for the task of processing on evolving
graphs.

2.2 Kaleidoscope for Evolving Graphs

Themain idea ofKaleidoscope is to use a similar notion ofMosaic
of independent subgraphs/tiles coupled with a locality-maximizing
traversal, like the Hilbert order, to allow for cache-locality, scalabil-
ity and compression.
The local graph. Kaleidoscope builds on and extends Mosaic’s
concept of local subgraphs, so-called tiles, to enable a localized, inde-
pendent processing of subgraphs. However, in contrast to Mosaic,
Kaleidoscope’s tiles are constructed in a simpler manner that al-
lows for easier updates when future edges and vertices are being
added. We propose to use simple blocks of size 216×216 as the basic
unit of processing in Kaleidoscope. This size ensures that vertex

IDs can be efficiently represented inside the tile, using short, 16
bit long identifiers, while being large enough to avoid many load-
balancing issues an approach with fewer vertices might have. These
identifiers will then get mapped into the global identifier space by
the means of a prefix being stored in the metadata associated with
a specific tile.

Furthermore, bucketing the graph into tiles like these allows for
independent updates to be applied to many portions of the graph
in parallel and opens up avenues for improving the cache locality
when using more intelligent, space-filling traversals.

We propose Kaleidoscope to use a simple trade-off between
adjacency lists, for old and compacted edges, and edge lists, for new
and unorganized edges [8].
Incremental compaction. Given the partitioned approach to the
graph construction, Kaleidoscope enables a trade-off between the
usual all-or-nothing approach to compaction: Instead of compacting
the entire graph in a single step, Kaleidoscope enables localized
compaction which can finish much faster than a compaction step
on the entire graph, thus interrupting the addition of new edges
for a much shorter time.
Locality. As demonstrated by COST [6] andMosaic, employing a
space-filling curve, like the Hilbert order, can improve cache locality
by 50% and more. We thus propose to employ a similar approach to
improving cache-locality in the setting of evolving graphs, using
the Hilbert order to achieve cache locality in the accesses to the
global vertex array when processing neighbouring tiles. Note that
Kaleidoscope executes many tiles in parallel, thus achieving cache
locality across the execution of multiple, in parallel processed tiles.
Vertex state update. Kaleidoscope also has to apply an incre-
mental approach to updating the vertex state: For example, the num-
ber of outgoing and incoming edges (out- and in-degree) changes
with every addition of an edge for a specific vertex. Kaleidoscope
supports this by keeping delta-records of the changes for the vertex
state, to allow for later processing of the historical state of the graph
as well.

3 DISCUSSION

Applicable scenarios forKaleidoscope. Kaleidoscope is tar-
geted at a sweet spot of applications that see updates often enough
that they matter, but not too often that they generate too much
turnover in the resulting graph. Good scenarios for Kaleidoscope
include settings like social networks or a web graph-like scenario
which show a power law distribution of vertex degrees, implying a
few, highly popular vertices with a high degree while many vertices
have a low degree and thus a low expected turnover. This in turn
allows Kaleidoscope to skip the processing (and thus overheads
like TLB misses, etc.) of many of its tiles, concentrating the churn
in a few highly popular tiles.

To give a consistent snapshot when executing an algorithm in
Kaleidoscope under concurrent vertex insertion, we tag edges
with a version identifier that allows Kaleidoscope to identify
whether a given edge has to be included in the result of an al-
gorithm execution for a specific snapshot identifier.
Applications for Kaleidoscope. Kaleidoscope is targeted to
support algorithms that build upon a common gather-apply-scatter

(GAS) abstraction [3], that already supports many algorithms and
can be extended to an incremental variant as used in GraphIn [9]. As
such, the set of potential algorithms and applicationsKaleidoscope
can support are traditional algorithms like a breadth-first search
and a connected components analysis as well as more complicated
algorithms like analyzing the clustering coefficients and counting
triangles.

4 CONCLUSION

We propose Kaleidoscope, a graph processing engine for tempo-
rally evolving graphs. Kaleidoscope addresses three problems in
current engines for processing evolving graphs: high memory us-
age when inserting edges into the graph due to untapped potential
of storing the graph in a compressed form, overhead when com-
pacting the graph into its compressed form, and poor cache locality
as a result of storing the graph in an uncompressed form.

Kaleidoscope addresses these issueswith a localized, tiled graph
storage data structure that reduces the storage overhead as well as
alleviate the problem of a synchronized graph compaction step.

5 ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feedback.
This research was supported, in part, by the NSF award CNS-
1563848, CNS-1704701, CRI-1629851, CNS-1749711, ONR under
grant N000141512162, DARPA TC (No. DARPA FA8650-15-C-7556),
ETRI IITP/KEIT[B0101-17-0644], and gifts from Facebook, Mozilla
and Intel.

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan. One
Trillion Edges: Graph Processing at Facebook-scale. Proceedings of the VLDB
Endowment, 8(12):1804–1815, Aug 2015.

[2] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. STINGER: High Performance Data
Structure for Streaming Graphs. In 2012 IEEE Conference on High Performance
Extreme Computing, pages 1–5, Sept. 2012.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Dis-
tributed Graph-parallel Computation on Natural Graphs. In Proceedings of the
10th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 17–30, Hollywood, CA, Oct. 2012.

[4] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim. Mosaic: Processing
a Trillion-Edge Graph on a Single Machine. In Proceedings of the 12th European
Conference on Computer Systems (EuroSys), pages 527–543, Belgrade, SR, Apr.
2017.

[5] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. LLAMA: Efficient graph
analytics using Large Multiversioned Arrays. In 2015 IEEE 31st International
Conference on Data Engineering, pages 363–374, April 2015.

[6] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what COST? In
15th USENIX Workshop on Hot Topics in Operating Systems (HotOS) (HotOS XV),
Kartause Ittingen, Switzerland, May 2015.

[7] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. Chaos: Scale-out
Graph Processing from Secondary Storage. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP), Monterey, CA, Oct. 2015.

[8] D. Sengupta and S. L. Song. EvoGraph: On-the-Fly Efficient Mining of Evolving
Graphs on GPU. In J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, editors, High
Performance Computing, pages 97–119. Springer International Publishing, 2017.

[9] D. Sengupta, N. Sundaram, X. Zhu, T. L. Willke, J. Young, M. Wolf, and K. Schwan.
GraphIn: AnOnline High Performance Incremental Graph Processing Framework.
In Proceedings of the 22nd International European Conference on Parallel and
Distributed Computing (EuroPar), pages 319–333, Grenoble, France, Aug. 2016.

[10] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and L. Zhou.
GraM: Scaling Graph Computation to the Trillions. In Proceedings of the 6th ACM
Symposium on Cloud Computing (SoCC), Kohala Coast, Hawaii, Aug. 2015.

[11] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay.
FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs.
In 13th USENIX Conference on File and Storage Technologies (FAST) (FAST 15),
pages 45–58, Santa Clara, CA, Feb. 2015.

	Abstract
	1 Motivation
	2 Overview
	2.1 Static Design for Locality: Mosaic
	2.2 Kaleidoscope for Evolving Graphs

	3 Discussion
	4 Conclusion
	5 Acknowledgment
	References

